
1

Mech 464: Project Report
 Bitcraze Drone Platform Tracking

Group 10:

John Matheson – 97462337

Ethan Alexander – 84207034

Kristoffer Klingenberg – 23443260

Willem Van Dam – 33500646

2

1 Abstract:

The problem that we are attempting to solve in our project is to program a drone to match the
unknown movements of a landing platform. The drone would use a combination of onboard
sensors along with the lighthouse data to track the platform. A second drone was used as the
moving “platform” with known position. A useful application for this would be the landing of a
helicopter on a boat in rough water. The Bitcraze development suite was used in the project with
their Crazyflie drones and IR locator lighthouses. In the project, we implemented our own control
algorithm for the follower drone. We installed the lighthouses. We designed our own drone and
boundary collision avoidance functions. To improve the performance of the follower drone, we
also implemented a position prediction algorithm that used the acceleration and velocity of the
tracked drone to estimate its future position. To measure the performance of the follower drone,
we compared the desired and actual position of the follower drone. The smaller the difference
between these two values the better.

The follower drone was tested in 4 different scenarios, step, step + prediction, ramp, ramp +
prediction. In the step response test, the tracked drone is flown to a fixed point in space and the
follower drone was commanded to move to the desired position. This test was used to see what
the “steady state” deviation is to use as a reference, and if our position-prediction function
causes any changes in the steady state stability. In the ramp response test the tracked drone
follows a circular path while rotating. What we found was that for a step response, the follower
drone was able to settle within 1 second and for the ramp response, the follower accuracy
oscillated between 0.1m and 0.2m. We found that our position prediction algorithm reduced the
error in the ramp response but increased the steady state error in the step response. There are
several ways that the performance could be improved that we lacked the time to implement,
including PID optimization and implementing a stiffness controller instead of the position
prediction algorithm.

3

2 Contents:

1 Abstract: .. 2

2 Contents: ... 3

3 Introduction: ... 4

4 Methodology: ... 4

4.1 Apparatus .. 4

4.2 Robot Layout .. 5

4.3 Control Algorithm .. 5

4.4 Implementation .. 6

4.4.1 Drone Avoidance .. 6

4.4.2 Position Prediction .. 7

5 Results: ... 9

6 Discussion and conclusions: .. 13

7 Statement of contribution: .. 13

8 References: ... 14

9 Appendices:... 14

9.1 Appendix A: Bitcraze Start-up Guide .. 14

9.1.1 Overview .. 14

9.1.2 Setting Up Lighthouses .. 14

9.1.3 Safety Considerations .. 15

9.1.4 About the Drone ... 15

9.1.5 Installing the VM & Connecting to the Drone using the Client 15

9.1.6 Coding Guide ... 16

4

3 Introduction:

The Bitcraze Crazyflie drone is an easily programmable quadcopter. The problem that we are
attempting to solve in our project is to program a drone to match the unknown movements of a
landing platform. The drone would use a combination of onboard sensors along with the
lighthouse data to track the platform. A second drone was used as the moving “platform” with
known position, so a platform did not need to be constructed. A useful application for this
would be the landing of a helicopter on a boat in rough water. We will be measuring the
performance of the tracking by monitoring the error between the desired position of the tracker
and the actual position of the tracker over the course of several tests.

4 Methodology:
4.1 Apparatus
The physical apparatus we used consisted of a shroud (mosquito net) and carpet to protect
ourselves and the drone from damage; 2 Crazyflie drones equipped with lighthouse sensor
decks; 2 Bitcraze lighthouses; and a computer to run the python program that controlled the
drones.

Figure 1: Physical Apparatus

5

4.2 Robot Layout
To relate the tracking drone to the following drone we treated the tracking drone as a parallel
manipulator that can move in X, Y, Z and θ independently. We then attached the following drone
through a serial arm that is offset in +k and -i from the tracking drone. From this robot layout we were
able to calculate the forward kinematics, The Jacobian and J_dot. Using this allowed us to calculate the
target velocity and acceleration of the following drone which improved our control. The figure below
shows the location of the following drone relative to the tracking drone.

Figure 2: Robot Manipulator Layout

4.3 Control Algorithm
After initializing the Following and Tracking drone the code loops through a set of instructions in
chronological steps.

Step 1: The Current position, velocity and acceleration of the tracking drone and the position of
the following drone are recorded by the lighthouse and sent to the computer and the respective
drones.

Step 2: Using the current position and movement data from the Following and Tracked drone,
we calculate the desired position, velocities and accelerations and predict where the desired
position is going to be at in 0.3 seconds time. In our tests, the desired position of the following
drone was a normal distance of 0.4m from the tracked drone, and 30° above the tracked drone.

6

Step 3: For the following drone, the vector (desired position - current position) and rotation
(yaw) required to achieve the desired position is calculated.

Step 3.5: The movement-vector is checked against the boundaries, both cage-edges and
tracking-drone safety-cylinder. (A cylinder was chosen to avoid downdraft-problems). If there is
interaction, either shorten the vector to end at the edge, or create a flightpath around the
Tracked drone to get to the desired position.

Step 4: The desired position for each drone (end of the vector with origin in the center for the
following drone) gets sent back to the drones and they move to those positions (or as close to it
as they can before a new iteration begins).

4.4 Implementation
To successfully track the drone, we wanted to avoid collisions between drones, avoid collisions
between the tracking drone and the walls, and to increase the accuracy of the tracking by using a
prediction algorithm. This section will describe how we implemented each of these solutions.

4.4.1 Drone Avoidance
To avoid mid-air collisions between the tracked drone and the follower drone, a cylinder of
exclusion was created around the tracked drone. The algorithm is listed below and references
figure X which visually represents the geometry of the solution.

1. If r
1

 > ||a||, F moves along a away from T

2. Else If φ < θ and w < d, move to point A
3. Else F moves along d to F’

Where,

• r1 is the radius of the exclusion zone. In our case 0.2m.
• r2 is the targeted radius of the follower drone. In our case 0.4m.
• d is the vector between the current position of the follower drone and the desired

position of the follower drone.
• a is the vector between the current position of the follower drone and the tracked

drone.
• A is a vector from the tracked drone to the targeted radius that is orthogonal to vector d.

The cylinder of exclusion has an infinite height. During initial testing, we used an exclusion
sphere instead of cylinder. Occasionally, the follower drone would pass above or below the
tracked drone. The effects of the downwash caused the lower drone to destabilize and often
crash.

7

Figure 3: Drone Avoidance Diagram

4.4.2 Position Prediction
To increase the accuracy of the follower drone, we implemented a position prediction algorithm.
The algorithm uses the first and second derivates of position to predict the final position of the
follower drone (F’). The prediction is used to compensate for the lag of program processing and
delay in the communication between the drone and the computer. Another benefit of this
improvement method is that it avoids the use of low-level firmware modification. We did some
research into changing the PID values of the drone. We also investigated optimizing the
communication protocol of the drone. Both avenues seemed very time consuming, so we
avoided them. The amount of time to predict ahead was based on experimentation. We found
that predicting the movement 0.4 seconds into the future was optimal. Going further into the
future would destabilize the drone, less time would cause the follower to be less accurate. The
figure below shows the block diagram for how we implemented this control method K_v=.4 and
K_a=.16, which is the position .4 seconds in the future.

8

Figure 4: Flow Diagram of Control Algorithm, drone algorithm created by Bitcraze, computer algorithm created by team

The figure below shows the geometry of the position prediction. The blue and yellow arrows
represent the movement prediction based on the acceleration, velocity, and rotational velocity of
the tracked drone. The follower drone’s current position is F and desired position is F’. The
tracked drone (T) defines the coordinate system of the drones.

9

Figure 5: Follower Drone Position Prediction

5 Results:

We have stored the demonstration videos of the tracking drone functioning in different test
cases on a members google drive. The videos are viewable by anyone with this link, and will be
referenced in this section.

To measure the performance of our tracking software, we recorded the distance between
desired position and actual position of the tracking drone during a step response test and a ramp
response test. The difference between desired and actual X, Y, Z, θ, and norm(X, Y, Z) were all
recorded. The test was first done without the position prediction software, then with it activated
so we could measure its performance. In the step response test, the tracked drone is flown to a
fixed point in space and the follower drone was commanded to move to the desired position.
This test was used to see what the “steady state” deviation is to use as a reference, and if our
position-prediction function causes any changes in the steady state stability. In the ramp
response test the tracked drone follows a circular path while rotating (multiple times per circle),
causing the follower drone to have significant angular acceleration to stay on its designated
point. The motion of the drones during the ramp response test can be seen in the Sinusoidal
Motion video.

https://drive.google.com/drive/folders/1Zx9-1wmvMicGJKuocRoB7BQXH1inJVup?usp=sharing

10

Figures 5-10 show the results of our four test cases. The raw data for our tests can be found in
CSV files in the project GitHub.

Figure 6: Performance of Tracking Program during Step Response without Prediction

Figure 7: Performance of Tracking Program during Step Response with Prediction

11

Figure 8: Performance (θ) of Tracking Drone during Step Response. Without Prediction (Left), with Prediction (Right)

Figure 9: Performance of Tracking Program during Ramp Response without Prediction

12

Figure 10: Performance of Tracking Drone (X,Y,Z) during Ramp Response with Prediction

Figure 11: Performance (θ) of Tracking Drone during Ramp Response. Without Prediction (Left), with Prediction (Right)

A summary of the performance of the tracking drone during each test can be found in table 1.
We will discuss our results in the discussion section.

Table 1: Summary of Test Results
Test Case Prediction

Time (s)
Linear Results (Norm) (m) Angular Results (rad)

Moving

0.4 Oscillating between ~0.05 and
0.13 giving it an average error of
~0.09

Decreasing down from 0.5 and
“stabilizes” at 0.15

Moving

0 Sinusoidal oscillation between 0.1
and 0.3 giving it an average of
~0.2

Decreasing from 0.35 to
“stabilizing” between 0.1 and
0.05

13

Stationary

0.4 After initial movement (1 second),
linearly decreases from 0.05 down
to 0.025

Damped oscillation between
0.058 and -0.05

Stationary 0 After initial movement (1 second),
goes from ~0.03 to ~0.02 (after
an increase /deviation up to
~0.05)

(Ignoring starting position)
variation between 0.035 and
–0.01

6 Discussion and conclusions:

One achievement that we made was to track another moving drone instead of a moving platform
as originally proposed. Tracking a moving drone means moving in three dimensions to track
(including yaw angle) and being able to avoid the tracked drone effectively. One challenge that
came from this is the air disturbance below each drone that disrupted the pathing of the drones.
We prevented this by making a keep-out zone in a cylinder around the drone that was effective
enough. This does mean that the following drone cannot position itself directly above the
tracked drone. The only way this could be improved is to test the minimum height above a drone
that does not disturb the drone below and change the keep-out cylinder height to this value.

Our second order position prediction method proved to be effective in improving the tracking
accuracy. At all points it resulted in a reduction in the position error of the tracking and flying
drone which proves our method is successful. The velocity and acceleration data from the drone
is fairly noisy so a filter or averaging function could be used to reduce the instability of the
following drone which we observed when we set the prediction value to a higher value

A potential improvement would be adding a stiffness controller on top of the prediction method
to close the gap between the current and target positions. This would allow us to still
compensate for the lag in the data transfer and reduce some of the errors in the drone's velocity,
which is not part of the PID controller on the drone. The next step for this controller would be to
modify the drone’s firmware so that a position and velocity setpoint can be implemented,
allowing for higher tracking accuracy.

Another minor improvement would be to revise the code structure to be more pythonic (such as
with classes) to make the code easier to build from for more complicated projects.

7 Statement of contribution:

John Matheson – 97462337 Most of the writing in the report, coded some
of the cases for testing the follower drone,
debugged the test cases.

Ethan Alexander – 84207034 Designed and programmed the feedforward
controller designed to work with pure
position programming. Setup the lighthouse

14

and positioning system. Programmed drone
communication backend.

Kristoffer Klingenberg – 23443260 Preliminary sources, coded some of the test
cases, debugging, report writing

Willem Van Dam – 33500646 Coded some of the algorithms, debugged all
algorithms and test cases, ran final tests for
recording, report writing

8 References:

[1] Lecture notes ch. 3 to 7: https://canvas.ubc.ca/courses/109153/modules

[2] Bitcraze build and VM/firmware installation (includes Code examples):
https://www.bitcraze.io/documentation/tutorials/getting-started-with-crazyflie-2-x/

[3] Bitcraze firmware installation: https://www.bitcraze.io/documentation/repository/crazyflie-
clients-python/master/installation/install/

[4] General Bitcraze GitHub: https://github.com/bitcraze

[5] Project GitHub: https://github.com/walnka/bitcrazeDrone

[6] Project PowerPoint containing test-videos: Group 10 presentation.pptx

9 Appendices:
9.1 Appendix A: Bitcraze Start-up Guide
9.1.1 Overview
To control a Crazyflie drone autonomously, the position of the drone must be tracked with either
the lighthouses or the flow deck. This document will only cover the use of lighthouses.

This guide includes a step-by-step guide to set up the Crazyflie drone, the lighthouses, and the
programming of the drone. It will also include the issues that were solved by previous groups
who used the Bitcraze drone.

9.1.2 Setting Up Lighthouses
Follow this tutorial:

https://www.bitcraze.io/documentation/tutorials/getting-started-with-lighthouse/

https://canvas.ubc.ca/courses/109153/modules
https://www.bitcraze.io/documentation/tutorials/getting-started-with-crazyflie-2-x/
https://www.bitcraze.io/documentation/repository/crazyflie-clients-python/master/installation/install/
https://www.bitcraze.io/documentation/repository/crazyflie-clients-python/master/installation/install/
https://github.com/bitcraze
https://github.com/walnka/bitcrazeDrone
https://ubcca-my.sharepoint.com/:p:/g/personal/canadaeh_student_ubc_ca/EQeQPsZrHKRBk9hUxyWIqU8BiC2Q5liPFq13-6q8fKit6A?e=q0ARo8
https://www.bitcraze.io/documentation/tutorials/getting-started-with-lighthouse/

15

9.1.3 Safety Considerations
This section discusses the apparatus that was used for past teams. The drone should be operated
within a shroud and above a soft-landing area. See figure A1 for the apparatus that was created
in KAIS3080. Contact between moving propellers will most likely not damage the skin but will
damage the eyes, if there is not a shroud between a user and the drone, eye protection should
be worn.

Figure A1: Drone Shroud and Carpet

9.1.4 About the Drone
This section consists of a list of compiled information about the drone.

• The battery of the drone will last for 10 minutes of continuous flight.
• The state of charge of the battery is shown on the drone as the duty cycle of the blinking

blue light on the drone while it is charging. During charging, if both blue LEDs on the
frame are solid, the battery is fully charged, if one led is off for the same time it is on, the
battery is 50% charged.

• Any time the drone is turned upside down the motors will be disabled until a power cycle.
This can also be used to allow for the drone to be tracked with the lighthouse without
flying

9.1.5 Installing the VM & Connecting to the Drone using the Client
To begin, the VM should be installed onto your computer. Follow the link below for the
instructions to set up the VM. After installing the VM it is best to reinstall the cfclient using the
following commands “Pip3 uninstall cfclient”, “Pip3 uninstall cflib”, “Pip3 install cfclient”.
https://www.bitcraze.io/documentation/tutorials/getting-started-with-crazyflie-2-x/

https://www.bitcraze.io/documentation/tutorials/getting-started-with-crazyflie-2-x/

16

9.1.6 Coding Guide
The link below leads to the GitHub project of a previous team that used the Bitcraze drone. Their
project involved tracking one drone using another drone and used many of the available Bitcraze
functions. The pathfinding&logging.py file is the one with all the useful information. Some good
modifications to make to the got to command in the high-level commander is to remove the
sleep command, this will make it a non blocking function so you can update the target point
while its moving to another point. You can also modify this function to allow you to implement
programing of yaw into the HLC by adding another input to it and passing it into the yaw.
Included in our GitHub repo is a high-level commander function with these modifications. Make
sure to not continuously send commands as the radio will not be able to keep up resulting in a
backlog of commands and the drones not being responsive.

 https://github.com/walnka/bitcrazeDrone

https://github.com/walnka/bitcrazeDrone

